

UDP Protocol
Specification v1.0

René Görlich, Paul Kanevsky and Peter Simpson

October 2011

Peter Simpson - 29th October 2011 - v1.0 Final 1

Gemini UDP Protocol Specification v1.0

Introduction
This document defines Gemini's UDP protocol specification and establishes the processes that clients

must implement in order to use the protocol. The protocol has been developed by René Goerlich,

Paul Kanevsky and Peter Simpson for use with the Gemini 2 telescope control system; it is not and

cannot be supported by the earlier Gemini 1 hardware and v4.1 firmware.

The UDP network protocol is described as are the reasons for its selection over TCP; some .NET

example code is also provided in Appendix 2. For support please post on the Gemini II Yahoo group

at: http://tech.groups.yahoo.com/group/Gemini-II/messages

What is UDP?1
The User Datagram Protocol (UDP) is one of the core members of the Internet Protocol Suite, the

set of network protocols used for the Internet. With UDP, computer applications can send messages,

in this case referred to as datagrams, to other hosts on an Internet Protocol (IP) network without

requiring prior communications to set up special transmission channels or data paths. The protocol

was designed by David P. Reed in 1980 and formally defined in RFC 768.

UDP uses a simple transmission model without implicit handshaking dialogues for providing

reliability, ordering, or data integrity. Thus, UDP provides an unreliable service and datagrams may

arrive out of order, appear duplicated, or go missing without notice. UDP assumes that error

checking and correction is either not necessary or performed in the application, avoiding the

overhead of such processing at the network interface level. Time-sensitive applications often use

UDP because dropping packets is preferable to waiting for delayed packets, which may not be an

option in a real-time system.[1] If error correction facilities are needed at the network interface level,

an application may use the Transmission Control Protocol (TCP) or Stream Control Transmission

Protocol (SCTP) which are designed for this purpose.

UDP's stateless nature is also useful for servers answering small queries from huge numbers of

clients. Unlike TCP, UDP supports packet broadcast (sending to all on local network) and multicasting

(send to all subscribers).[2]

Common network applications that use UDP include: the Domain Name System (DNS), streaming

media applications such as IPTV, Voice over IP (VoIP), Trivial File Transfer Protocol (TFTP), IP

tunneling protocols and many online games.

UDP applications use datagram sockets to establish host-to-host communications. An application

binds a socket to its endpoint of data transmission, which is a combination of an IP address and a

service port. A port is a software structure that is identified by the port number, a 16 bit integer

1 Reproduced from Wikipedia, please see document licensing section for further information.

http://en.wikipedia.org/wiki/Internet_Protocol_Suite
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Datagram
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/David_P._Reed
http://tools.ietf.org/html/rfc768
http://en.wikipedia.org/wiki/Handshaking
http://en.wikipedia.org/wiki/User_Datagram_Protocol#cite_note-kuroseross-0
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
http://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
http://en.wikipedia.org/wiki/Stateless_server
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Broadcasting_%28networks%29
http://en.wikipedia.org/wiki/Multicast
http://en.wikipedia.org/wiki/User_Datagram_Protocol#cite_note-forouzan-1
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/IPTV
http://en.wikipedia.org/wiki/Voice_over_IP
http://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
http://en.wikipedia.org/wiki/IP_tunneling
http://en.wikipedia.org/wiki/IP_tunneling
http://en.wikipedia.org/wiki/Online_game
http://en.wikipedia.org/wiki/Datagram_socket
http://en.wikipedia.org/wiki/IP_address
http://en.wikipedia.org/wiki/Port_number
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/User_Datagram_Protocol

Peter Simpson - 29th October 2011 - v1.0 Final 2

value, allowing for port numbers between 0 and 65535. Port 0 is reserved, but is a permissible

source port value if the sending process does not expect messages in response.

Comparison of TCP and UDP
This comparison is based on four features of the two protocols

 TCP UDP

Lightweight

Relative to UDP, a heavier weight
protocol because it supports reliable and
ordered communications in a very
flexible and self adaptive manner.

Lightweight protocol because it is simple,
connectionless and does not support
reliable and ordered communication.

Responsive

Optimised for reliable bulk transfer
operations where multiple packet sends
can be acknowledged in one return
packet. For "highly interactive, chatty"
applications, can be less responsive than
UDP.

Low intrinsic protocol overhead, suited to
"chatty" applications where fast round
trip response times are required

Reliable

TCP manages message acknowledgment,
retransmission and timeout. Multiple
attempts to deliver the message are
made. If it gets lost along the way, the
server will re-request the lost part. In
TCP, there's either no missing data, or, in
case of multiple timeouts, the
connection is dropped.

When a message is sent, it cannot be
known if it will reach its destination; it
could get lost along the way. There is no
concept of acknowledgment,
retransmission or timeout.

Ordered

if two messages are sent over a
connection in sequence, the first
message will reach the receiving
application first. When data segments
arrive in the wrong order, TCP buffers
the out-of-order data until all data can
be properly re-ordered and delivered to
the application.

If two messages are sent to the same
recipient, the order in which they arrive
cannot be predicted.

In the world of TCP/IP, with which we are most familiar, TCP provides reliable data communication

and as application users we do not need to concern ourselves with issues such as packets arriving

out of order or being lost in transit.

Why UDP, why not TCP?
Key requirements for the Gemini protocol are that it is:

 Lightweight: It places low demand on the network and Gemini hardware / OS

 Responsive: Gemini receives commands and clients receive responses quickly

 Reliable: The protocol must detect and correct communications errors

 Ordered: Commands are processed by Gemini in the order in which they are sent

Peter Simpson - 29th October 2011 - v1.0 Final 3

TCP was initially selected as the protocol because it meets all four requirements, however, testing

revealed two issues:

1. Lightweight: High impact on the Gemini CPU when using the built-in TCP stack

2. Responsive: Slow responses when using Windows clients2

These were traced to:

1. The TCP stack provided in the software development kit for the Gemini chipset was found to

have a relatively high impact on the Gemini processor, impacting overall responsiveness and

throughput.

2. The default value of the Microsoft TCP stack TcpAckFrequency setting (2), resulted in a

200ms delay in the round trip time to Gemini because the stack was waiting for a second

packet from Gemini before sending the ACK packet for the first packet. Gemini on the other

hand was waiting for an ACK to the first packet before sending the second packet...

deadlock! The deadlock was always broken after 200ms by the Microsoft stack sending an

ACK, even if it had not received a second packet within that time. So the system worked

reliably but with frequent delays of 200ms resulting in low throughput.

When TcpAckFrequency is set to a value of 1, performance is fast, however, it was not felt

appropriate to require all Gemini uses to change the Microsoft default setting and therefore

to carry the risk that some other aspect of Windows would not perform as expected.

Testing with UDP was much more successful, providing a higher throughput than TCP, even with

TcpAckFrequency set to 1 together with lower processor impact due to the lower protocol overhead

for Gemini and because it bypassed the higher levels of the Microsoft TCP stack at the client.

UDP thus meets the Lightweight and Responsive Gemini protocol requirements but does not meet

the Reliable and Ordered requirements; consequently we need to provide these at the application

level.

Implementation is straightforward since we don't need all the frills that TCP provides and just need a

simple, low overhead process. The following sections describe Gemini's UDP protocol and both the

client's and Gemini's roles in the error recovery process.

Access to Gemini's UDP Server
Gemini creates a UDP listener socket by default on port 11110; there is no security access control,

login or similar concept. If you can reach port 11110 then you can immediately send commands to

Gemini and receive responses. The UDP port number used by the Gemini server can be changed

through the Network Settings page of the Gemini's built-in web application.

2

 In testing René used a Linux client and did not see the 200ms ACK delay, this issue was only observed in the Microsoft TCP/IP stack.

Peter Simpson - 29th October 2011 - v1.0 Final 4

UDP Datagram Format
This diagram shows the UDP protocol fields and the Gemini protocol fields that are defined within

the UDP Data field.

Your UDP protocol stack will take care of the first 8 bytes (0 to7) of the UDP protocol fields, which

record the source and destination IP ports, the length of the datagram and a checksum over the

entire datagram. The Data field (shown in blue), starting at offset 8 is where the Gemini protocol

fields are located.

The Gemini protocol defines three fields within the UDP datagram Data field:

Field Offset Purpose

DatagramNumber 0 On sending a command, this must be a unique number for this
datagram from this client. It sequentially increments by one for
each datagram starting at 0.

On receipt of a datagram from Gemini, this will contain the
DatagramNumber of the command for which this is the
response.

LastDatagramNumber 4 This should be set to zero for commands to Gemini and will
normally be zero in responses from Gemini.

It is set to the DataGramNumber of the last received command
from the client, in response to a NAK command from the client.
(See error handling protocol section)

GeminiData 8 Command to Gemini, using the Gemini Serial Command syntax
or response from Gemini, in both cases terminated by the NULL
character (0x00).

The maximum size of the GeminiData field is 255 bytes; the total
size of Gemini command strings, including NULL characters,
should not exceed this size.

DatagramNumber LastDatagramNumber

0 4

GeminiData

8 255Data Field Offset 73

Source Port Number Destination Port Number Length Checksum Data

0 2 4 6 8Offset 1 3 5 7

UDP Protocol Fields

Gemini Protocol Fields

Peter Simpson - 29th October 2011 - v1.0 Final 5

Client Protocol
The overall Gemini client - server protocol is set out diagrammatically in Appendix 1. The happy path

is straightforward comprising:

 Open a socket connection

 Loop as needed:

o Construct a datagram containing a Gemini serial protocol command

o Send the datagram to Gemini

o Listen for the response datagram

o Extract Gemini's response from the return datagram and pass to the application

 Close the socket connection

Sending Individual Serial Commands to Gemini
In these cases the data to be sent is an individual serial command as defined in the serial protocol,

which must be terminated with a NULL (0x00) character. In this example you want to send the :GR#

command. So, you would determine the next unused DataGramNumber by incrementing that last

used DataGramNumber and then construct a GeminiData field comprising:

 4 bytes of DatagramNumber field

 4 bytes of 0x00 for the LastDatagramNumber field

 4 characters of serial command :GR#

 1 byte of NULL character(0x00) as terminator

and send it to Gemini as a UDP datagram.

In response, you will receive a datagram containing something like:

 4 bytes of DatagramNumber field (same as the one you sent)

 4 bytes of 0x00 for the LastDatagramNumber field

 9 characters of response 13:45:23#

 1 byte of NULL character(0x00) as terminator

Sending Multiple Gemini Serial Commands to Gemini
The UDP protocol supports sending multiple Gemini Serial Commands in one datagram. For example,

if you send the commands :

 4 bytes of DatagramNumber field

 4 bytes of 0x00 for the LastDatagramNumber field

 17 characters of serial command :GR#:GD#:GS#:GVP#

 1 byte of NULL character(0x00) as terminator

in one datagram you will receive a response datagram containing something like:

 4 bytes of DatagramNumber field (same as the one you sent)

 4 bytes of 0x00 for the LastDatagramNumber field

 43 characters of response 13:45:23#75:34:09#09:56:09#Losmandy Gemini#

 1 byte of NULL character(0x00) as terminator

Peter Simpson - 29th October 2011 - v1.0 Final 6

Serial Commands with no Response
Some serial protocol commands have no response e.g. :Q#, :RS# If one of these is sent on its own,

there should be no response for the client and the client will be unable to determine that the

command has actually been received and acted upon.

To cater for this situation, Gemini will respond with a datagram containing an ACK (0x06) character

terminated with a NULL (0x00) character whenever there is no serial command response to return.

Thus the client should wait for a response datagram from Gemini under all circumstances. It will

either contain the response or the ACK character if there is no serial command response.

If multiple commands are sent, one of which does not have a response, the ACK character will not be

returned as the response to the other commands indicates that the response-less command was

received and processed OK.

Datagram Reliability - Arrival Order
Since UDP does not guarantee packet arrival order, critical sequences must be managed at the

application level. An example of a critical sequence is the "Equatorial Slew" sequence where the

Serial Protocol specifies that the :Sr command must be sent before the :Sd command.

This can be achieved in two ways:

1. Ensure that your client always waits for the response to a command before sending the next

command, i.e. always have only one datagram "in flight" at a time.

2. Place all critical sequence commands into one datagram using the "Multiple Gemini Serial

Commands approach described above. This will ensure that they all either arrive together

and are processed in the order that you placed them in the datagram, or they do not arrive

at all and are resent together through the "Errors and Losses" process described below.

Either method will work on its own but using both together is recommended.

A list of critical sequence commands is given in Appendix 3.

Datagram Reliability - Errors or Losses
The Gemini UDP protocol specifies that every command datagram will receive a response datagram,

even if the Gemini serial command does not have an application response. When things go wrong

we need to consider two scenarios:

1. Command never reaches Gemini, so no response is sent

2. Command is received by Gemini but response is lost in transit and never reaches the client

From the client's perspective, both scenarios look the same: I sent a UDP datagram and I never

received a response datagram; so it has no idea whether or not Gemini received and acted on the

command. To detect that something has gone wrong, the client should implement a timeout in its

"wait for response UDP datagram" routine.

When this is activated, the client must query Gemini to find out why no response was received,

fortunately Gemini can supply information that allows the client to determine whether scenario, 1.

or 2. above applies.

Peter Simpson - 29th October 2011 - v1.0 Final 7

So, on timing out, the client should send a 9 byte NACK datagram3,4 to Gemini:

 4 bytes of DatagramNumber field

 4 bytes of 0x00 for the LastDatagramNumber field

 1 byte of NACK character(0x15)

Gemini will respond with a datagram like this:

 4 bytes of DatagramNumber field (same as supplied in NACK datagram)

 4 bytes of LastDatagramNumber (DatagramNumber of the last command

received)

 Response to the command in the LastDatagramNumber datagram

 1 byte of NULL character(0x00) as terminator

The client should examine the LastDatagramNumber field and compare it with the DatagramNumber

of the command that timed out.

 If it is the same, Gemini did receive the command and the response was lost en-route from

Gemini to the client. The required response is now in this datagram so it can be returned to

the client application method that initiated the command. Job done!

 If it is different, then Gemini never received the command in the first place, so the client

should resend the command that timed out, using a new DatagramNumber, and return the

response to that datagram to the calling method. Job done!

Under network loss conditions, Gemini may time out on several consecutive attempts to retrieve the

command response. In this circumstance, the communications routine should throw an exception

back to the application indicating loss of communication to Gemini, so it can trigger appropriate

messages to higher level applications, the user interface or the application log.

Macro Commands
For convenience, if you send a datagram that just contains the ACK command shown below, you will

receive the composite response shown.

Command Response

0x05 Coordinates PRA, PDEC (as integer values) , RA, DEC, AZ, EL (as double values),
separated by a semicolon.
e.g.: 1113128;1152000;3.805914;+90.000000;360.000000;+51.078611;T;W;

Future versions of the UDP protocol are expected to extend this command set.

3
 There is no NULL terminator character in this datagram

4 The DatagramNumber field should be the next unused value in sequence, it must not be any previously used value

Peter Simpson - 29th October 2011 - v1.0 Final 8

Document Licensing
This document contains text from Wikipedia http://en.wikipedia.org/wiki/User_Datagram_Protocol

To comply with its licensing requirements, this document is distributed under the same Creative

Commons Attribution ShareAlike 3.0 Unported (CC-BY-SA 3.0) license

http://creativecommons.org/licenses/by-sa/3.0/, which makes it freely copyable and usable for

commercial purposes, so long as appropriate attribution is made and derived works are published

under the CC-BY-SA license.

Document History
Version Release Date Changes

0.1 Draft 15th October 2011 Initial draft for review

0.2 Draft 23rd October 2011 Tidied typos, created new comparison section for TCP and UDP,
reworked the "Why UDP?" section. Refined code example and
wording in protocol flowchart. Added title page. Improved UDP
datagram format picture

1.0 Final 29th October 2011 UDP Datagram format: Confirmed GeminiData field length as 255.
Macros: Tidied to allow for future protocol extensions.
Appendix 2 - .NET example code: Tidied variable names and added
more comment.
Appendix 3 - Critical sequences: Added native commands to
critical sequence list and provided example.

http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://creativecommons.org/licenses/by-sa/3.0/

Peter Simpson - 29th October 2011 - v1.0 Final 9

Appendix 1 - Client Protocol Flowchart

Driver waits

for

response

Response

Received
Yes

Does the

Response format match the

expected format?

No

Yes

Timeout

Command Loop

Send NACK datagram

to Gemini with new

DatagramNumber

Driver waits

for

response

DatagramNumber field matches

the NACK DatagramNumber?

Response

Received
Yes

Gemini has processed

the command, the

driver has the result so

continue at Command

Loop

Resync

Try Resync a few more

times, then give up.

Timeout

No

Gemini didn’t receive

the original datagram

so resend that

command starting at

Command Loop
Gemini is not

responding

Try again

LastDatagramNumber field

matches the DatagramNumber of

the Timed out datagram?

DatagramNumber field matches

the command DatagramNumber?

No Yes

The driver now has

the result so continue

at Command Loop
Send Command

datagram to Gemini with

new DatagramNumber

Peter Simpson - 29th October 2011 - v1.0 Final 10

Appendix 2 -.NET Example Code

Imports System.Net
Imports System.Net.Sockets
Imports System.Text

'This code shows how to open a UDP connection, send a command and receive a response from Gemini

Dim hostinfo As IPHostEntry, UDPSocket As Socket
Dim TransmitBytes(255), ReceiveBytes(255) As Byte, NumberOfBytes As Integer, ReceiveString As String
Dim GeminiCommand As String

'Constants defining field positions within the datagram and the length of both integer fields
Const DatagramNumberField As Integer = 0
Const LastDatagramNumberField As Integer = 4
Const GeminiDataField As Integer = 8
Const IntegerFieldLength As Integer = 4

GeminiCommand = ":GVP#" 'Command to be sent to Gemini

Try
 'Open a UDP socket to the Gemini server
 UDPSocket = New Socket(AddressFamily.InterNetwork, SocketType.Dgram, ProtocolType.Udp) ' Create a UDP socket

 hostinfo = Dns.GetHostEntry("gemini") ' Find the IP address of Gemini
 UDPSocket.Connect(hostinfo.AddressList, 11110) 'Connect the socket to the Gemini server
 UDPSocket.ReceiveTimeout = 2000 'Set the receive timeout to 2 seconds

 'Construct the datagram to be sent to Gemini in the TransmitBytes byte buffer
 'Set the Gemini DatagramNumber to 1 as this is the first datagram and the LastDatagramNumber to 0
 Array.Copy(BitConverter.GetBytes(1%), 0, TransmitBytes, DatagramNumberField, IntegerFieldLength)
 Array.Copy(BitConverter.GetBytes(0%), 0, TransmitBytes, LastDatagramNumberField, IntegerFieldLength)

 'Add the command to be sent and the trailing NULL character starting at offset 8
 Array.Copy(Encoding.ASCII.GetBytes(GeminiCommand), 0, TransmitBytes, GeminiDataField, GeminiCommand.Length)
 Array.Copy(Encoding.ASCII.GetBytes(Chr(0)), 0, TransmitBytes, GeminiDataField + GeminiCommand.Length, 1)

 'Send the datagram to Gemini
 UDPSocket.Send(TransmitBytes, DatagramNumberField, GeminiDataField + GeminiCommand.Length + 1, SocketFlags.None)

 'Receive the returned datagram data field from Gemini into the ReceiveBytes byte buffer
 NumberOfBytes = UDPSocket.Receive(ReceiveBytes)

 'Extract the command response as a string and display it
 'Ignore the first 8 bytes containing DatagramNumber and LastDatagramNumber
 ReceiveString = Encoding.ASCII.GetString(ReceiveBytes, GeminiDataField, NumberOfBytes - GeminiDataField)
 ReceiveString = ReceiveString.TrimEnd(Chr(0)) 'Remove the NULL character terminator added by Gemini
 MsgBox("Gemini response to " & GeminiCommand & ": " & ReceiveString)

 'Close the UDP socket connection
 UDPSocket.Close()

Catch ex As Exception
 MsgBox(ex.ToString)
End Try

Peter Simpson - 29th October 2011 - v1.0 Final 11

Appendix 3 - Critical Sequence Commands

LX200-Like Commands

 :Os with :Od

 :OS with :OR

 :RC with :MA

 :RC/RG/RM/Rm/RS with :Me/Mw/Mn/Ms/Ma/Mi/Mg

 :SG with :SL/SC

 :Sr with :ON with :Sd (This order is recommended in the serial commands description)

 :Sz with :ON with :Sa

Gemini Native Command Sequences
For maximum UDP communication robustness, native commands in the following sequences should

be grouped together. You do not have to send all of the commands in each sequence, but if you are

setting several of these parameters as part of a single application level operation, it is advisable to

send them all in one datagram.

 >1: to >26:

 >100: and >110:

 >120: to >172:

 >201: to >211:

 >220: to >223:

 >411: to >415:

 >501: to >504:

 >801: to >815:

E.g. if you wish to set the:

 mount type to MI250

 DEC and RA worm ratios to -360 and 25

 Move and slew speeds to 500

 PE counter to zero

You should, at a maximum, send these as three datagrams:

 Mount type and worm ratios because they are in the >1: to >26: range

 Both movement rates because they are in the range >120: to :172:

 Reset PE counter because it is the range >501: to >504:

Of course, there is nothing to stop you merging these into two or just one datagram so long as all the

commands in each bullet above stay in the same datagram.

