
UDP Protocol
Specification v1.2

René Görlich, Paul Kanevsky and Peter Simpson

March 2018

Gemini UDP Protocol Specification v1.2

Introduction
This document defines Gemini's UDP protocol specification and establishes the processes that clients

must implement in order to use the protocol. The protocol has been developed by René Görlich, Paul

Kanevsky and Peter Simpson for use with the Gemini 2 telescope control system; it is not and cannot

be supported by the earlier Gemini 1 hardware and v4.1 firmware.

The UDP network protocol is described as are the reasons for its selection over TCP; some .NET

example code is also provided in Appendix 2. For support please post on the Gemini II Yahoo group

at: http://tech.groups.yahoo.com/group/Gemini-II/messages

What is UDP?1

The User Datagram Protocol (UDP) is one of the core members of the Internet Protocol Suite, the set

of network protocols used for the Internet. With UDP, computer applications can send messages, in

this case referred to as datagrams, to other hosts on an Internet Protocol (IP) network without

requiring prior communications to set up special transmission channels or data paths. The protocol

was designed by David P. Reed in 1980 and formally defined in RFC 768.

UDP uses a simple transmission model without implicit handshaking dialogues for providing

reliability, ordering, or data integrity. Thus, UDP provides an unreliable service and datagrams may

arrive out of order, appear duplicated, or go missing without notice. UDP assumes that error

checking and correction is either not necessary or performed in the application, avoiding the

overhead of such processing at the network interface level. Time-sensitive applications often use

UDP because dropping packets is preferable to waiting for delayed packets, which may not be an

option in a real-time system.[1] If error correction facilities are needed at the network interface level,

an application may use the Transmission Control Protocol (TCP) or Stream Control Transmission

Protocol (SCTP) which are designed for this purpose.

UDP's stateless nature is also useful for servers answering small queries from huge numbers of

clients. Unlike TCP, UDP supports packet broadcast (sending to all on local network) and multicasting

(send to all subscribers).[2]

Common network applications that use UDP include: the Domain Name System (DNS), streaming

media applications such as IPTV, Voice over IP (VoIP), Trivial File Transfer Protocol (TFTP), IP tunneling

protocols and many online games.

UDP applications use datagram sockets to establish host-to-host communications. An application

binds a socket to its endpoint of data transmission, which is a combination of an IP address and a

service port. A port is a software structure that is identified by the port number, a 16 bit integer

value, allowing for port numbers between 0 and 65535, that allows for multiplexing many

1 Reproduced from Wikipedia, please see document licensing section for further information.

Peter Simpson, René Görlich - 7rh March 2018 - v1.2 Draft 1

http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Port_number
http://en.wikipedia.org/wiki/IP_address
http://en.wikipedia.org/wiki/Datagram_socket
http://en.wikipedia.org/wiki/Online_game
http://en.wikipedia.org/wiki/IP_tunneling
http://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
http://en.wikipedia.org/wiki/Voice_over_IP
http://en.wikipedia.org/wiki/IPTV
http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/User_Datagram_Protocol#cite_note-forouzan-1
http://en.wikipedia.org/wiki/Multicast
http://en.wikipedia.org/wiki/Broadcasting_(networks)
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Stateless_server
http://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
http://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol#cite_note-kuroseross-0
http://en.wikipedia.org/wiki/Handshaking
http://tools.ietf.org/html/rfc768
http://en.wikipedia.org/wiki/David_P._Reed
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Datagram
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Internet_Protocol_Suite

applications on a host. Port 0 is reserved, but is a permissible source port value if the sending process

does not expect messages in response.

Comparison of TCP and UDP
This comparison is based on four features of the two protocols

TCP UDP

Lightweight

Relative to UDP, a heavier weight
protocol because it supports reliable and
ordered communications in a very
flexible and self adaptive manner.

Lightweight protocol because it is simple,
connectionless and does not support
reliable and ordered communication.

Responsive

Optimised for reliable bulk transfer
operations where multiple packet sends
can be acknowledged in one return
packet. For "highly interactive, chatty"
applications, can be less responsive than
UDP.

Low intrinsic protocol overhead, suited to
"chatty" applications where fast round trip
response times are required.

Reliable

TCP manages message acknowledgment,
retransmission and timeout. Multiple
attempts to deliver the message are
made. If it gets lost along the way, the
server will re-request the lost part. In
TCP, there's either no missing data, or, in
case of multiple timeouts, the
connection is dropped.

When a message is sent, it cannot be
known if it will reach its destination; it
could get lost along the way. There is no
concept of acknowledgment,
retransmission or timeout.

Ordered

The bytes send in a stream are handed
over in the same order. When data
segments arrive in the wrong order, TCP
buffers the out-of-order data until all
data can be properly re-ordered and
delivered to the application.

If two messages are sent to the same
recipient, the order in which they arrive
cannot be predicted.

In the world of TCP/IP, with which we are most familiar, TCP provides reliable data communication

streams and as application users we do not need to concern ourselves with issues such as packets

arriving out of order or being lost in transit.

Why UDP, why not TCP?
Key requirements for the Gemini protocol are that it is:

 Lightweight: It places low demand on the network and Gemini hardware and the connecting

operating system

 Responsive: Gemini receives commands and clients receive responses quickly

 Reliable: The protocol must detect and correct communications errors

 Ordered: Commands are processed by Gemini in the order in which they are sent

Peter Simpson, René Görlich - 7rh March 2018 - v1.2 Draft 2

TCP based protocols are available to access Gemini, but have certain disadvantages that should be

considered:

1. Lightweight: High impact on the Gemini CPU when using the built-in TCP stack. The

necessary buffering limits the amount of available sockets.

2. Responsive: The TCP implementation decides how long data is buffered before sending. Slow

responses when using Windows clients2

These were traced to:

1. A TCP stack needs resources to implement the features described above, impacting overall

responsiveness and throughput.

2. The TCP stack decides when a data segment is sent. The default value of the Microsoft TCP

stack TcpAckFrequency setting (2), resulted in a 200ms delay in the round trip time to Gemini

because the stack was waiting for a second packet from Gemini before sending the ACK

packet for the first packet. Gemini on the other hand was waiting for an ACK to the first

packet before sending the second packet... deadlock! The deadlock was always broken after

200ms by the Microsoft stack sending an ACK, even if it had not received a second packet

within that time. So the system worked reliably but with frequent delays of 200ms resulting

in low throughput.

When TcpAckFrequency is set to a value of 1, performance is fast, however, it was not felt

appropriate to require all Gemini uses to change the Microsoft default setting and therefore

to carry the risk that some other aspect of Windows would not perform as expected.

Testing with UDP was much more successful, providing a higher throughput than TCP, even with

TcpAckFrequency set to 1 together with lower processor impact due to the lower protocol overhead

for Gemini and because it bypassed the higher levels of the Microsoft TCP stack at the client.

UDP thus meets the Lightweight and Responsive Gemini protocol requirements but does not meet

the Reliable and Ordered requirements; consequently we need to provide these at the application

level.

Implementation is straightforward since we don't need all the frills that TCP provides and just need a

simple, low overhead process. The following sections describe Gemini's UDP protocol and both the

client's and Gemini's roles in the error recovery process.

Access to Gemini's UDP Server
Gemini creates a UDP listener socket by default on port 11110; there is no security access control,

login or similar concept. If you can reach port 11110 then you can immediately send commands to

Gemini and receive responses. The UDP port number used by the Gemini server can be changed

through the Network Settings page of the Gemini's built-in web application.

2 In testing René used a Linux client and did not see the 200ms ACK delay, this issue was only observed in the Microsoft TCP/IP stack.

Peter Simpson, René Görlich - 7rh March 2018 - v1.2 Draft 3

UDP Datagram Format
This diagram shows the UDP protocol fields and the Gemini protocol fields that are defined within

the UDP Data field.

Your UDP protocol stack will take care of the first 8 bytes (0 to7) of the UDP protocol fields, which

record the source and destination IP ports, the length of the datagram and a checksum over the

entire datagram. The Data field (shown in blue), starting at offset 8 is where the Gemini protocol

fields are located.

The Gemini protocol defines three fields within the UDP datagram Data field:

Field Offset Purpose

DatagramNumber 0 On sending a command, this must be a unique number for this
datagram from this client. It sequentially increments by one for
each datagram starting at 0.

On receipt of a datagram from Gemini, this will contain the
DatagramNumber of the command for which this is the
response.

LastDatagramNumber 4 This should be set to zero for commands to Gemini and will
normally be zero in responses from Gemini.

It is set to the DataGramNumber of the last received command
from the client, in response to a NAK command from the client.
(See error handling protocol section)

GeminiData 8 Command to Gemini, using the Gemini Serial Command syntax
or response from Gemini, in both cases terminated by the NULL
character (0x00).

The maximum size of the GeminiData field is 255 bytes; the total
size of Gemini command strings, including NULL characters,
should not exceed this size.

Peter Simpson, René Görlich - 7rh March 2018 - v1.2 Draft 4

Client Protocol
The overall Gemini client - server protocol is set out diagrammatically in Appendix 1. The happy path

is straightforward comprising:

 Open a socket connection

 Loop as needed:

o Construct a datagram containing a Gemini serial protocol command

o Send the datagram to Gemini

o Listen for the response datagram

o Extract Gemini's response from the return datagram and pass to the application

 Close the socket connection

Sending Individual Serial Commands to Gemini
In these cases the data to be sent is an individual serial command as defined in the serial protocol,

which must be terminated with a NULL (0x00) character. In this example you want to send the :GR#

command. So, you would determine the next unused DataGramNumber by incrementing that last

used DataGramNumber and then construct a GeminiData field comprising:

 4 bytes of DatagramNumber field
 4 bytes of 0x00 for the LastDatagramNumber field
 4 characters of serial command :GR#
 1 byte of NULL character(0x00) as terminator

and send it to Gemini as a UDP datagram.

In response, you will receive a datagram containing something like:

 4 bytes of DatagramNumber field (same as the one you sent)
 4 bytes of 0x00 for the LastDatagramNumber field
 9 characters of response 13:45:23#
 1 byte of NULL character(0x00) as terminator

Sending Multiple Gemini Serial Commands to Gemini
The UDP protocol supports sending multiple Gemini Serial Commands in one datagram. For example,

if you send the commands :

 4 bytes of DatagramNumber field
 4 bytes of 0x00 for the LastDatagramNumber field
 17 characters of serial command :GR#:GD#:GS#:GVP#
 1 byte of NULL character(0x00) as terminator

in one datagram you will receive a response datagram containing something like:

 4 bytes of DatagramNumber field (same as the one you sent)
 4 bytes of 0x00 for the LastDatagramNumber field
 43 characters of response 13:45:23#75:34:09#09:56:09#Losmandy Gemini#
 1 byte of NULL character(0x00) as terminator

Peter Simpson, René Görlich - 7rh March 2018 - v1.2 Draft 5

Serial Commands with no Response
Some serial protocol commands have no response e.g. :Q#, :RS# If one of these is sent on its own,

there should be no response for the client and the client will be unable to determine that the

command has actually been received and acted upon.

To cater for this situation, Gemini will respond with a datagram containing an ACK (0x06) character

terminated with a NULL (0x00) character whenever there is no serial command response to return.

Thus the client should wait for a response datagram from Gemini under all circumstances. It will

either contain the response or the ACK character if there is no serial command response.

If multiple commands are sent, one of which does not have a response, the ACK character will not be

returned as the response to the other commands indicates that the response-less command was

received and processed OK.

Datagram Reliability - Arrival Order
Since UDP does not guarantee packet arrival order, critical sequences must be managed at the

application level. An example of a critical sequence is the "Equatorial Slew" sequence where the

Serial Protocol specifies that the :Sr command must be sent before the :Sd command.

This can be achieved in two ways:

1. Ensure that your client always waits for the response to a command before sending the next

command, i.e. always have only one datagram "in flight" at a time.

2. Place all critical sequence commands into one datagram using the "Multiple Gemini Serial

Commands approach described above. This will ensure that they all either arrive together

and are processed in the order that you placed them in the datagram, or they do not arrive

at all and are resent together through the "Errors and Losses" process described below.

Either method will work on its own but using both together is recommended.

A list of critical sequence commands is given in Appendix 3.

Datagram Reliability - Errors or Losses
The Gemini UDP protocol specifies that every command datagram will receive a response datagram,

even if the Gemini serial command does not have an application response. When things go wrong we

need to consider two scenarios:

1. Command never reaches Gemini, so no response is sent

2. Command is received by Gemini but response is lost in transit and never reaches the client

From the client's perspective, both scenarios look the same: I sent a UDP datagram and I never

received a response datagram; so it has no idea whether or not Gemini received and acted on the

command. To detect that something has gone wrong, the client should implement a timeout in its

"wait for response UDP datagram" routine.

When this is activated, the client must query Gemini to find out why no response was received,

fortunately Gemini can supply information that allows the client to determine whether scenario, 1.

or 2. above applies.

Peter Simpson, René Görlich - 7rh March 2018 - v1.2 Draft 6

So, on timing out, the client should send a 9 byte NACK datagram3,4 to Gemini:

 4 bytes of DatagramNumber field
 4 bytes of 0x00 for the LastDatagramNumber field
 1 byte of NACK character(0x15)

Gemini will respond with a datagram like this:

 4 bytes of DatagramNumber field (same as supplied in NACK datagram)
 4 bytes of LastDatagramNumber (DatagramNumber of the last command

received)
 Response to the command in the LastDatagramNumber datagram
 1 byte of NULL character(0x00) as terminator

The client should examine the LastDatagramNumber field and compare it with the DatagramNumber

of the command that timed out.

 If it is the same, Gemini did receive the command and the response was lost en-route from

Gemini to the client. The required response is now in this datagram so it can be returned to

the client application method that initiated the command. Job done!

 If it is different, then Gemini never received the command in the first place, so the client

should resend the command that timed out, using a new DatagramNumber, and return the

response to that datagram to the calling method. Job done!

Under network loss conditions, Gemini may time out on several consecutive attempts to retrieve the

command response. In this circumstance, the communications routine should throw an exception

back to the application indicating loss of communication to Gemini, so it can trigger appropriate

messages to higher level applications, the user interface or the application log.

Macro Commands
For convenience, if you send a datagram that just contains the ENQ command shown below, you will

receive the composite response shown.

Command Response

0x05 Coordinates PRA, PDEC (as integer values) , RA, DEC, HA, AZ, EL (as double values),
movement rate (N/T/G/C/S see :Gv#) and side of pier (W/E see :Gm#) each
separated by a semicolon. Sidereal time and tracking time left until Safety Limit is
reached. State bits (see <99), servo lags in both axes, PWM duty in both axes.
e.g.:
1152000;1152000;0.907784;+90.000000;+6.000001;180.000000;+33.818611;N;N;N
;E;6.907785;0;32;26327.898667;1;01060100;0;0;0;0;

Future versions of the UDP protocol are expected to extend this command set.

3 There is no NULL terminator character in this datagram

4 The DatagramNumber field should be the next unused value in sequence, it must not be any previously used value

Peter Simpson, René Görlich - 7rh March 2018 - v1.2 Draft 7

Document Licensing
This document contains text from Wikipedia http://en.wikipedia.org/wiki/User_Datagram_Protocol

To comply with its licensing requirements, this document is distributed under the same Creative

Commons Attribution ShareAlike 3.0 Unported (CC-BY-SA 3.0) license

http://creativecommons.org/licenses/by-sa/3.0/, which makes it freely copyable and usable for

commercial purposes, so long as appropriate attribution is made and derived works are published

under the CC-BY-SA license.

Document History
Version Release Date Changes

0.1 Draft 15th October 2011 Initial draft for review

0.2 Draft 23rd October 2011 Tidied typos, created new comparison section for TCP and UDP,
reworked the "Why UDP?" section. Refined code example and
wording in protocol flowchart. Added title page. Improved UDP
datagram format picture

1.0 Final 29th October 2011 UDP Datagram format: Confirmed GeminiData field length as 255.
Macros: Tidied to allow for future protocol extensions.
Appendix 2 - .NET example code: Tidied variable names and added
more comment.
Appendix 3 - Critical sequences: Added native commands to critical
sequence list and provided example.

1.1 Draft 3rd November 2011 Corrected spelling or René's name -oops, sorry! Corrected Macro
command character to ENQ rather than ACK.

1.2 Draft 7th March 2018 Extended ENQ Macro description.

Peter Simpson, René Görlich - 7rh March 2018 - v1.2 Draft 8

http://creativecommons.org/licenses/by-sa/3.0/
http://en.wikipedia.org/wiki/User_Datagram_Protocol

Appendix 1 - Client Protocol Flowchart

Peter Simpson, René Görlich - 7rh March 2018 - v1.2 Draft 9

Appendix 2 -.NET Example Code

Imports System.Net

Imports System.Net.Sockets

Imports System.Text

'This code shows how to open a UDP connection, send a command and receive a response from Gemini

Dim hostinfo As IPHostEntry, UDPSocket As Socket

Dim TransmitBytes(255), ReceiveBytes(255) As Byte, NumberOfBytes As Integer, ReceiveString As String

Dim GeminiCommand As String

'Constants defining field positions within the datagram and the length of both integer fields

Const DatagramNumberField As Integer = 0

Const LastDatagramNumberField As Integer = 4

Const GeminiDataField As Integer = 8

Const IntegerFieldLength As Integer = 4

GeminiCommand = ":GVP#" 'Command to be sent to Gemini

Peter Simpson, René Görlich - 7rh March 2018 - v1.2 Draft 10

Try

 'Open a UDP socket to the Gemini server

 UDPSocket = New Socket(AddressFamily.InterNetwork, SocketType.Dgram, ProtocolType.Udp) ' Create a UDP socket

 hostinfo = Dns.GetHostEntry("gemini") ' Find the IP address of Gemini

 UDPSocket.Connect(hostinfo.AddressList, 11110) 'Connect the socket to the Gemini server

 UDPSocket.ReceiveTimeout = 2000 'Set the receive timeout to 2 seconds

 'Construct the datagram to be sent to Gemini in the TransmitBytes byte buffer

 'Set the Gemini DatagramNumber to 1 as this is the first datagram and the LastDatagramNumber to 0

 Array.Copy(BitConverter.GetBytes(1%), 0, TransmitBytes, DatagramNumberField, IntegerFieldLength)

 Array.Copy(BitConverter.GetBytes(0%), 0, TransmitBytes, LastDatagramNumberField, IntegerFieldLength)

 'Add the command to be sent and the trailing NULL character starting at offset 8

 Array.Copy(Encoding.ASCII.GetBytes(GeminiCommand), 0, TransmitBytes, GeminiDataField, GeminiCommand.Length)

 Array.Copy(Encoding.ASCII.GetBytes(Chr(0)), 0, TransmitBytes, GeminiDataField + GeminiCommand.Length, 1)

 'Send the datagram to Gemini

 UDPSocket.Send(TransmitBytes, DatagramNumberField, GeminiDataField + GeminiCommand.Length + 1, SocketFlags.None)

Peter Simpson, René Görlich - 7rh March 2018 - v1.2 Draft 11

 'Receive the returned datagram data field from Gemini into the ReceiveBytes byte buffer

 NumberOfBytes = UDPSocket.Receive(ReceiveBytes)

 'Extract the command response as a string and display it

 'Ignore the first 8 bytes containing DatagramNumber and LastDatagramNumber

 ReceiveString = Encoding.ASCII.GetString(ReceiveBytes, GeminiDataField, NumberOfBytes - GeminiDataField)

 ReceiveString = ReceiveString.TrimEnd(Chr(0)) 'Remove the NULL character terminator added by Gemini

 MsgBox("Gemini response to " & GeminiCommand & ": " & ReceiveString)

 'Close the UDP socket connection

 UDPSocket.Close()

Catch ex As Exception

 MsgBox(ex.ToString)

End Try

Peter Simpson, René Görlich - 7rh March 2018 - v1.2 Draft 12

Appendix 3 - Critical Sequence Commands

LX200-Like Commands
 :Os with :Od

 :OS with :OR

 :RC with :MA

 :RC/RG/RM/Rm/RS with :Me/Mw/Mn/Ms/Ma/Mi/Mg

 :SG with :SL/SC

 :Sr with :ON with :Sd (This order is recommended in the serial commands description)

 :Sz with :ON with :Sa

Gemini Native Command Sequences
For maximum UDP communication robustness, native commands in the following sequences should

be grouped together. You do not have to send all of the commands in each sequence, but if you are

setting several of these parameters as part of a single application level operation, it is advisable to

send them all in one datagram.

 >1: to >26:

 >100: and >110:

 >120: to >172:

 >201: to >211:

 >220: to >223:

 >411: to >415:

 >501: to >504:

 >801: to >815:

E.g. if you wish to set the:

 mount type to MI250

 DEC and RA worm ratios to -360 and 25

 Move and slew speeds to 500

 PE counter to zero

You should, at a maximum, send these as three datagrams:

 Mount type and worm ratios because they are in the >1: to >26: range

 Both movement rates because they are in the range >120: to :172:

 Reset PE counter because it is the range >501: to >504:

Of course, there is nothing to stop you merging these into two or just one datagram so long as all the

commands in each bullet above stay in the same datagram.

Peter Simpson, René Görlich - 7rh March 2018 - v1.2 Draft 13

	Introduction
	What is UDP?
	Comparison of TCP and UDP
	Why UDP, why not TCP?
	Access to Gemini's UDP Server
	UDP Datagram Format
	Client Protocol
	Sending Individual Serial Commands to Gemini
	Sending Multiple Gemini Serial Commands to Gemini
	Serial Commands with no Response
	Datagram Reliability - Arrival Order
	Datagram Reliability - Errors or Losses

	Macro Commands
	Document Licensing
	Document History
	Appendix 1 - Client Protocol Flowchart
	Appendix 2 -.NET Example Code
	Appendix 3 - Critical Sequence Commands
	LX200-Like Commands
	Gemini Native Command Sequences

